CoFiSet: Collaborative Filtering via Learning Pairwise Preferences over Item-sets

نویسندگان

  • Li Chen
  • Weike Pan
چکیده

Collaborative filtering aims to make use of users’ feedbacks to improve the recommendation performance, which has been deployed in various industry recommender systems. Some recent works have switched from exploiting explicit feedbacks of numerical ratings to implicit feedbacks like browsing and shopping records, since such data are more abundant and easier to collect. One fundamental challenge of leveraging implicit feedbacks is the lack of negative feedbacks, because there are only some observed relatively “positive” feedbacks, making it difficult to learn a prediction model. Previous works address this challenge via proposing some pointwise or pairwise preference assumptions on items. However, such assumptions with respect to items may not always hold, for example, a user may dislike a bought item or like an item not bought yet. In this paper, we propose a new and relaxed assumption of pairwise preferences over item-sets, which defines a user’s preference on a set of items (item-set) instead of on a single item. The relaxed assumption can give us more accurate pairwise preference relationships. With this assumption, we further develop a general algorithm called CoFiSet (collaborative filtering via learning pairwise preferences over item-sets). Experimental results show that CoFiSet performs better than several stateof-the-art methods on various ranking-oriented evaluation metrics on two real-world data sets. Furthermore, CoFiSet is very efficient as shown by both the time complexity and CPU time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New learning methods for supervised and unsupervised preference aggregation

In this paper we present a general treatment of the preference aggregation problem, in which multiple preferences over objects must be combined into a single consensus ranking. We consider two instances of this problem: unsupervised aggregation where no information about a target ranking is available, and supervised aggregation where ground truth preferences are provided. For each problem class...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes

Collaborative filtering (CF) and contentbased filtering (CBF) have widely been used in information filtering applications, both approaches having their individual strengths and weaknesses. This paper proposes a novel probabilistic framework to unify CF and CBF, named collaborative ensemble learning. Based on content based probabilistic models for each user’s preferences (the CBF idea), it combi...

متن کامل

Learning to Rank for Collaborative Filtering

Up to now, most contributions to collaborative filtering rely on rating prediction to generate the recommendations. We, instead, try to correctly rank the items according to the users’ tastes. First, we define a ranking error function which takes available pairwise preferences between items into account. Then we design an effective algorithm that optimizes this error. Finally we illustrate the ...

متن کامل

Towards Better User Preference Learning for Recommender Systems

In recent years, recommender systems have become widely utilized by businesses across industries. Given a set of users, items, and observed user-item interactions, these systems learn user preferences by collective intelligence, and deliver proper items under various contexts to improve user engagements and merchant profits. Collaborative Filtering is the most popular method for recommender sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013